ICS 125 – Project in Software System Development – MONkEY Team - DESIGN

Table of Contents

1. Introduction

2. Understanding

3. Project Plan

4. Design Specification

4.1 Architecture Overview

4.1.1 Architectural Style

4.1.2 System Architecture Overview

4.1.2.1 Object Model

4.1.2.2 Dynamic Model

4.1.2.2.1 Prepare Scenarios

4.1.2.2.2 Event Trace Diagrams

4.1.2.2.3 State Transition Diagrams

4.1.2.3 Functional Model

4.1.3 Subsystem Narrative

4.1.4 Current Major Limitations

4.2 Objects Specification

5. Integration Test Plan

6. Demonstration Plan

7. Tracking and Control Mechanism

8. Documentation

9. Glossary

Phase 2: System Design

Team Name: MONkEY
Strength & Conditioning Software (S&C)

1. Introduction

Currently, people (Coaches and Athletes) at the Weight Room – Department of Campus Recreation, UC Irvine – use papers and pencils to keep track of athletes’ information. They realize that this method of recording data is not appropriate any more, but a new Software System instead.

Eric Burkhardt, Strength and Conditioning Coach in weight training requested the Software System, called Strength and Conditioning software (S&C). This software system will allow the strength and conditioning coach to prescribe exercise accurately and efficiently. Its record keeping abilities would make it possible to improve future exercise prescription based upon evaluation of previous program’s result.

The MONkEY team is developing S&C software in a phased model and expecting to deliver the complete system by June 12, 1999. After successfully finishing the requirements & analysis phase, the MONkEY team proceeds to the Design phase. This document is prepared by the MONkEY team to describe the design for the S&C software system as well as other documentation, e.g., Project Plan and Integration Test Plan. For the ease of reading, this document is divided into sections, and further into subsections, each of which describes one or more aspects of the S&C lifecycle. They include,

1. Introduction.

2. Understanding.

3. Project Plan

4. Design Specification

5. Integration Test Plan

6. Demonstration Plan

7. Tracking and Control Mechanisms

8. Documentation

9. Glossary

In addition, the update version of the Requirements document is attached to reflect the inconsistencies discovered during the design process.

Each of the above sections will be discussed in great details in the following sections.

2. Understanding

The weigh room of the Strength and Conditioning Department has been keeping the exercise records of its athletes. This is a very tedious process when records keeping are done manually. It takes the coaches a lot of time to set up exercises for their athletes and then record their performances. This also results in piles of papers over the years.

In order to solve these problems, computers will be used in place of papers and pencils. A new system will be implemented and installed in those computers. This system will have the following abilities:

· Allowing coaches and athletes to log in or out any time. A maximum of sixteen athletes can log in at one workstation.

· Allowing coaches to create new athletes or group of athletes.

· Allowing coaches to set up daily workout program for a group of athletes.

· Allowing coaches to view listing of all athletes in a team.

· Allowing coaches to adjust/modify the workout programs any time.

· Allowing athletes to view only their workout program of the day and record the exercises they complete.

· Storing the exercise data of each athlete.

· Storing the daily workout program of each team.

· Displaying the analysis of an athlete's record, show an athlete's performance against the given workout program within a time period by a bar graph (actual vs. prescribed).

· Along with these requirements, our client also indicated some additional features that will be considered as future expansion of the S&C system. These features include:

· Converting S&C into a web-based application.

· Adding individual athlete who does not belong to any team or belongs to more than one team.

· Allowing sub-teams to be added inside a team when create a team name.

· In order to solve those problems, there are some technologies involved in the project such as

· Networking under Windows NT

· VC Programming

· In order to understand the project, these following activities will be done:

· Email, phone, and interview the customer (Eric Burkhardt)

3. Ask for advice from the instructor and TA

4. Project Plan

We did make a lot of changes to the original Project Plan during the design process. Please see next pages [click]

4. Design Specification

Design is a process that transforms the requirements into an architecture diagram and a detailed design. This is exactly the purpose of this section. This transformation is greatly presented in the following subsections.
4.1 Architecture Overview

4.1.1 Architectural Style

The MONkEY team has done a few researches on a variety of different architectural styles and realized that the Object-Oriented Style is best suited for the S&C software and, therefore, it will be used in developing the S&C software system. Followings are some advantages that Object-Oriented design supports:

· The system can be easily divided into subsystems and then into objects. Each of the objects can be dealt with separately, thus, reduce complexity.

· Minimizing bugs in terms of independent testing. Each [small] object would be tested independently (make sure working correctly) before integration.

· Inheritance makes it possible for easy update and reuse.

· Enforce data/algorithms encapsulation.

4.1.2 System Architecture Overview

In this section the system architecture can be viewed in different level of abstraction, yet the same level of detail. At the highest level, the system is divided into subsystems. Each of the subsystems provides a group of functionality corresponding to the requirements stated by the customer. Figure 4.1.2-1 shows the subsystem architecture.

[image: image1.jpg]
Each of the subsystems is further broken into objects (since Object-Oriented style is used). The Object Modeling Technique (OMT) is used for the whole course of the design for S&C Software. The OMT basically consists of three models:

· Object Model

· Dynamic Model

· Functional Model

Each of the models will be described shortly (below) using the OMT format.

4.1.2.1 Object Model

This basically is a diagram containing all objects that constitute the system. The relationship between objects is indicated in the OMT format. Important attributes and methods of each object are also included; the complete description of each object will be discussed in more detail in the later section. Figure on the next page depicts the object diagram.

4.1.2.2 Dynamic Model

The purpose of the Dynamic Model is to track the behavior of the objects (hence the system) over time. The three major activities necessary to describe the dynamic model are described in detail below.

4.1.2.2.1 Prepare Scenarios

Based on system’s functionality the set of scenarios is prepared. Each of the scenarios is a specific sequence of events representing a path through a system’s states.

Scenario 1: Creating a new team
· A coach first logs in

· He then chooses to create a new team.

· He enters the new team name that he wants to create.

· A new team has been created for him.

Scenario 2: Adding new athletes into a team.

· A coach first logs in.

· He then selects the name of the team that he wants to add more athletes into.

· He enters all the information related to each athlete.

· After completing the process of adding new athletes into the team, a list of athletes that belongs to this team is created for him.

Scenario 3: Creating new daily program
· A coach first logs in.

· He then chooses to create a new daily program.

· He specifies which team he wants to create a workout program for.

· He then enters all the necessary information for completing a new daily workout program, eg. Exercise, number of repetition, number of set…

· A new daily program has been created for the specified team.

Scenario 4: Editing an existing daily program

· A coach first logs in.

· He then chooses to edit an existing daily workout program.

· He specifies which team and which workout program he wants to edit.

· An old program then appears for him to view.

· He then makes any changes as he wishes.

· An edited daily workout program has been stored for the team.

Scenario 5: Editing an athlete's record
· A coach first logs in.

· He then chooses to edit an athlete's record.

· He specifies which athlete's record he wants to edit.

· An old record for this athlete appears for him to view.

· He then makes any changes as he wishes.

· The edited athlete's record has been saved in place of the old one.

Scenario 6: Viewing list of athletes in a team

· A coach first logs in.

· He then chooses to view a list of athletes in a team.

· He specifies which team he wants to look at.

· He views all the members who belongs to this team with the information related to them (their full names, their last-four-digit ID numbers)

Scenario 7: Viewing the analysis for an athlete

· A coach first logs in.

· He then chooses to do the analysis for an athlete based on his performance.

· He specifies which athlete he wants to view over a specified period of time.

· He views the charts that show the program prescribed for this athlete and his actual workout performance.

· He enters his comments about this athlete's performance based on the chart generated.

Scenario 8: Getting help on the software
· A coach first logs in.

· He then chooses to learn more information about the S&C software and how to use it.

· He can also specify which help topic that he is really interested in.

Scenario 9: Unsuccessfully creating a new team.

· A coach logs in.

· He then chooses to create a new team.

· He enters the new team name that he wants to create.

· This team name has been already existed.

· An error message displays to inform him the problem.

Scenario 10: Unsuccessfully adding new athletes into a team.

· A coach first logs in.

· He then selects the name of the team that he wants to add more athletes into.

· He enters all the information related to an athlete but this athlete is already existed.

· An error message displays to inform him the problem.

Scenario 11: Unsuccessfully creating new daily program
· A coach first logs in.

· He then chooses to create a new daily program.

· He specifies which team he wants to create a workout program for.

· He then enters information for a new daily workout program, eg. Exercise, number of repetition, number of set…However he does not complete the form.

· An error message displays to ask him for providing completed information.

Scenario 12: Unsuccessfully editing an existing daily program

· A coach first logs in.

· He then chooses to edit an existing daily workout program.

· He specifies which team and which workout program he wants to edit.

· An old program then appears for him to view.

· He then makes any changes as he wishes. However, he enters invalid data when editing.

· An error message displays.

Scenario 13: Unsuccessfully editing an athlete's record

· A coach first logs in.

· He then chooses to edit an athlete's record.

· He specifies which athlete's record he wants to edit.

· However, he enters a non-existing athlete's name.

· An error message displays to inform him the problem.

Scenario 14: Unsuccessfully viewing the analysis for an athlete

· A coach first logs in.

· He then chooses to do the analysis for an athlete based on his performance.

· He specifies which athlete he wants to view over a specified period of time.

· However, the time range he chooses does not exist.

· An error message displays to inform him the problem.
Scenario 15: Recording an athlete's actual workout

· An athlete logs in.

· He views his workout program prescribed for him for that day.

· After finishing each exercise, he enters the exercise he actually completed.

· His actual workout program is then saved for him.

Scenario 16: Unsuccessfully recording an athlete's actual workout

· An athlete logs in.

· He views his workout program prescribed for him for that day.

· After finishing each exercise, he enters the exercise he actually completed.

· However, he enters invalid data.

· An error message displays to inform him the problem.
4.1.2.2.2 Even Trace Diagrams

Correspond to each of the above scenarios is an event trace diagram, which is shown below:

4.1.2.2.3 State Transition Diagrams

The values of an object’s attributes define the state of that object. An event makes attributes of an object changed, and so the object’s state. Each of the following diagrams describes the internal states of one or more objects of the system:

· Adding new Daily Programs
· Adding new Athletes

·

 HYPERLINK "state-editDayProg.doc"

Edit existing Daily Program

·

 HYPERLINK "state-analyzeData.doc"

Analyze Athlete’s Data

· Recording workout information
4.1.2.3 Functional Model

Corresponding to each sequence of actions is a Data Flow Diagram to describe the flow of data changed after each action.

· Adding new Daily Program

·

 HYPERLINK "functional-addNewAthlete.doc"

Adding new Athletes

· Edit existing Daily Program
· Analyze Athlete’s data
· Recording workout information
4.1.3 Subsystem Narrative

Requirements
Subsystem Mappings

The S&C software helps Strength and Conditioning Coach to prescribe exercise.
Program Planner

The S&C system allows athletes to enter data, and allows Coach to edit existing programs
Data Input

The S&C system helps keep data efficiently and easily
Record Storage

The S&C system improves future exercise prescription based upon evaluation of previous program’s result.
Data Analysis

The S&C system can tell the coach a story: display charts so that the coach can easily see the athletes’ trends
Display

Clearly, the S&C system is best divided into 5 subsystems, each of the subsystems provides a group of functionality of the system.

· Program Planner. Responsible for creating and initializing new objects of types

· Athlete Record

· Exercise Set

· Daily Program

· Team Sport Record

· Data Input. Responsible for retrieving, modifying, and storing Athletes’ records from and into database.
· Record Storage. Responsible for keeping data. All information is stored in record manner to facilitate the operation of retrieving and storing. Text files are used to store all records.

· Data Analysis. Responsible for analyze data and put data in a well-formatted form – charts – such that human (Weight Training Coach, typically) can interpret easily. The input to this subsystem would be the athletes’ records stored in the database. The output would be charts representing athletes’ information that will be displayed by the Display subsystem.

· Display. Responsible for all the User Interface of the system. This subsystem allows easy interaction between the system and users of the system. The commands (menus and menu items) are available for user to use; the reaction (e.g., charts, error messages) to each command is displayed.

4.1.4 Current Major Limitations

Although everything is correct at the time of writing this document, there are a few limitations, which should be improved in the future to maximize the capabilities of the system.

· Data Storage. According to this current design, all information is stored in text files, which is relatively inefficient in accessing data. This is acceptable for now, since the size of the database is expected to be not too big. The current design separates the Data Storage as an independent subsystem. Therefore, this can be easily replaced by another database system, e.g., Microsoft Access.

The current design limits the number of Athletes logging in to 16 at a time. This number will be expended in the near future.

4.2 Objects Specification

Coach

name

password

Coach ();

void setName (string name);

void setPassword(string pwd);

string getPassword ();

string getName();

boolean coachLogin();

~Coach();

DailyProgram

teamName

date

listOfExercise

DailyProgram ();

void displayDailyProgram();

void setName (string teamName);

void setDate (Date programDate);

void setExercise (vector <Exercise> listE);

void setProgram (string teamName, Date

 programDate, vector <Exercise> listE);

Date getDate ();

string getName();

vector <Exercise> getExerciseList();

addExercise (Exercise ex);

Exercise find (string exName);

void deleteExercise (string name);

void modifyProgram (string name, bool warmUpStatus,

 int rep, int set, int repMax, double weight, double weightPercent

);

~DailyProgram();

Exercise

warmUpStatus

exerciseName

reps

set

numberRM

weight

percentWt

Exercise();

 Exercise (bool warmUp, string exname, int

 rep, int sets, int numRM);

bool getWarmUpStatus();

string getExName();

int getRepNum();

int getSetNum();

int getRepMax();

double getWeight();

double getPercentWt();

double convertPercentWtToKg ();

void setWarmUpStatus(boolean status);

void setExName(string name);

void setRepNum(int num);

void setNumSet(int num);

void setRepMax(int num);

void setWeight(double weight);

void setPercentWt(double weight);

void displayExercise ();

~Exercise();

MaxStrength

string exerciseName;

int numRM;

Date date;

double weight;

MaxStrength();

MaxStrength (string name, int repMax, Date newDate,

 double newWeight);

void setExName(string name);

void setRepMax (int num);

void setDate (Date newDate);

void setWeight (double newWeight);

string getExName ();

int getRepMax ();

Date getDate();

double getWeight ();

~MaxStrength();

Athlete

activeStatus

inputFile

name

ID

teamName

position

listMaxStrength

Athlete();

Athlete(bool status, File * f, string name, int id, string teamN, string pos, Vector <MaxStrength> v);

void setActiveStatus(boolean status);

void setName (string name);

void setID (int newID);

void setTeamName (string newTeamName);

void setPosition (string pos);

void setMaxStrength (MaxStrength newMS);

boolean getActiveStatus ();

string getName ();

int getID();

string getTeamName();

string getPosition ();

MaxStrength getMaxStrength();

Athlete createNewAthlete (boolean status, string

 name, int newID, string newTeamName, string

 pos, MaxStrength newMS);

void displayAthleteInfo();

~Athlete();

TeamSport

teamName

TeamSport();

TeamSport (string name);

void setTeamName (string name);

string getTeamName ();

void displayTeamInfo();

~TeamSport();

DataBase

listOfTeamSports

listOfDailyProgram

listOfAthletes

DataBase();

DataBase (vector <string>

 listT, vector <DailyProgram> newDP, vector <Athlete>

 listA);

void storeAthlete (Athlete ath);

void storeDailyProgram (DailyProgram DP);

void storeTeamSport (string name);

~Database();

Date

day

month

year

Date();

Date (string day, int month, int year);

void setDay (string newDay);

void setMonth (int mon);

void setYear (int newYear);

string getDay ();

int getMonth ();

int getYear ();

~Date()

Analysis

chart

athleteID

fromDate

toDate;

Analysis();

Analysis (Graphics c, int ID, Date from, Date to);

void setAthleteID (int id);

void setFromDate (Date from);

void setToDate (Date to);

void generateCharts ();

void analyzePerformance();

~Analysis();

ErrorHandler

errorList

ErrorHandler();

void insertErrorMessage(string msg);

void deleteErrorMessage(string msg);

void displayErrorMessage();

~ErrorHandler();

ErrorMessage

errorName

errorMsgContent

ErrorMessage();

void setErrorName(string msg);

void displayErrorMessage (string errName);

void setMsgContent();

~ErrorMessage();

Detail Module Description

1. Object Class: Coach

· Purpose:

The “Coach” class is used to hold all the information about a coach: his/her name and password so that he/she can log in to the system with the privilege to create or change an athlete’s record or a daily workout program. He can also view the charts generated and

· Narrative:
This class has methods which are used by other classes to create its new instance object with a certain “name” and “password”. When Eric Burkhardt, Strength and Conditioning Coach in Weight Training first logs in, he will be the one in the training room to have a privilege to access all the information in the system. However, through the “createNew()” function, new coach will be created and added into the system also. A “Coach” object is initialized when he first logs in successfully.

· Interfaces:

class Coach

{

private:

string name;

string password;

public:

Coach ();

void setName (string name);

void setPassword(string pwd);

string getPassword ();

string getName();

boolean coachLogin();

~Coach();

}

· Data/ Attribute:

· name is used to hold the name of a coach. Its maximum size is of 25 characters. It will be input in the format first name and last name.

· password is used to verify the right to access the system. Only coaches will be given a privilege to modify or set up daily workout program for athletes.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create new coach to use the system or when a coach logs into the system.

· “Database” will have an access to this module.

· Inheritance/with/use hierarchy: none

· Constraints: this module is developed for running under Windows NT environment. Therefore, there is no constraint related to the environment.

· Cardinality: There is at least one “Coach” object in the system. Each time a coach uses this system, a “Coach” object is created. The cardinality of this module is n (any positive integer number).

2. Object Class: DailyProgram

· Purpose:

This class is used to hold all information about the daily workout program for a certain day which is created by a coach. The coach can create a new workout program any time he wishes. The newly created program can be retrieved later by its date. Athletes belonging to certain team can do their exercises based on this workout program created for them.

· Narrative/Comment:

This class contains many methods that will be used when a coach wants to create a new workout program for an athlete. When he/she chooses the functionality “create a new program”, the method “createProgram()” will be called to initialize a new DailyProgram object. As he provides all the data for completing a certain workout program (team name, date, number of set, number of repetition…), these data will be set to appropriate data members inside the class through its methods. These data can also be retrieved for use later.

· Interfaces:

class DailyProgram

{

private:

string teamName;

Date date;

vector <Exercise> listOfExercise;

public:

DailyProgram ();

int getCreateDailyProgRequest();

void setName (string teamName);

void setDate (Date programDate);

void setExercise (vector <Exercise> listE);

void setProgram (string teamName, Date

programDate, vector <Exercise> listE);

Date getDate ();

string getName();

vector <Exercise> getExerciseList();

void addExercise (Exercise ex);

Exercise find (string exName);

void deleteExercise (string name);

void modifyProgram (string name, bool warmUpStatus,

int rep, int set, int repMax, double weight, double weightPercent);

void displayDailyProgram();

~DailyProgram();

}

· Data/Attributes:

· teamName: holds the name of a certain team. Its maximum length will be 50 characters.

· date: holds the date when the program is created.

· listOfExercise : holds the list of all the exercise that a coach prescribes for a team for a certain date.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create new daily workout program requested from the coach.

· “Planner”, “Coach” , “Athlete”, “I/O” and “Database” classes will have access to this module and invoke its public methods.

· Inheritance/with/uses hierarchy: none

· Constraints: none

· Cardinality:

There is zero or more “DailyProgram” object in the system. Each time a coach wants to create a workout for a team, a “DailyProgram” object is created. The cardinality of this module is n (any non negative integer number).

3. Object Class: Exercise

· Purpose:

This class is used to hold all information about a certain exercise within a daily workout program that is created by a coach. It keeps the number of repetitions, sets… The coach can create a new exercise any time he wishes and this exercise will be added into an appropriate daily program. Athletes belonging to certain team can view these exercises created for them in the daily program.

· Narrative/Comment:

This class contains many methods that will be used when a coach wants to create a new exercise sets for an athlete within a same daily workout program. As he provides all the data for completing a certain exercise for that particular workout program (team name, date, number of set, number of repetition…), these data will be set to appropriate data members inside the class through its methods. These data can also be retrieved for use later.

· Interfaces:

class Exercise

{

private:

bool warmUpStatus = false;

string exerciseName;

int reps, set, numberRM;

double weight;

double percentWt;

public:

Exercise();

Exercise (bool warmUp, string exname, int rep,

int sets, int numRM);

bool getWarmUpStatus();

string getExName();

int getRepNum();

int getSetNum();

int getRepMax();

double getWeight();

double getPercentWt();

double convertPercentWtToKg ();

void setWarmUpStatus(boolean status);

void setExName(string name);

void setRepNum(int num);

void setNumSet(int num);

void setRepMax(int num);

void setWeight(double weight);

void setPercentWt(double weight);

void displayExercise ();

~Exercise();

}

· Data:

· warmUpStatus: is used to indicate if a certain exercise is a warm-up exercise or a regular one. Its value is either True or False.

· exerciseName: is used to hold the name of an exercise. Its maximum length is 50 characters.

· reps: is used to hold a certain number of repetitions that an athlete works on.

· weight: is used to hold the number of kilogram that an athlete needs to do

· percentWt: is used to hold the number of weight in percent that an athlete needs to work on.

· set: is used to hold a certain number of exercise set.

· numberRM: is used to hold the number of repetition maximum for an athlete.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create new exercise within a certain daily workout program requested from the coach.

· “DailyProgram” and “Database” will have an access to this module.

· Inheritance/with/uses hierarchy: none.

· Constraints: none

· Cardinality:

There is zero or more “Exercise” object in the system. Each time a coach wants to create a workout for a team, a “Exercise” object is created within that workout program. The cardinality of this module is n (any non negative integer number).

4. Object Class: MaxStrength

· Purpose:

This class is used to hold all information about the maximum strength for each athlete for certain type of exercise. It contains the maximum number of repetitions that an athlete is able to do, the date recorded, and the appropriate weight.

· Narrative/Comment:

This class contains many methods that will be used to provide the specific maximum strength that an athlete can handle when a new workout program for him is created . When a coach chooses a certain maximum strength, this “MaxStrength” will be created. As he provides all the data for completing a record of an athlete’s maximum strength, these data will be set to appropriate data members inside the class through its methods. These data can also be retrieved for use later.

· Interfaces:

class MaxStrength

{

private:

string exerciseName;

int numRM;

Date date;

double weight;

public:

MaxStrength();

MaxStrength (string name, int repMax,

Date newDate, double newWeight);

void setExName(string name);

void setRepMax (int num);

void setDate (Date newDate);

void setWeight (double newWeight);

string getExName ();

int getRepMax ();

Date getDate();

double getWeight ();

~ MaxStrength();

}

· Data/Attributes:

· exerciseName: holds the name of a certain exercise. Its maximum length will be 50 characters.

· date: holds the date when this record is created.

· numRM: holds the corresponding repetition maximum.

· weight: holds the weight that an athlete has ability to handle in kilograms.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create new daily workout program requested from the coach.

· “Athlete” , “MaxStrength” , “Exercise”, “DailyProgram” and “Database” will have accesses to this module.

· Inheritance/with/uses heirachy: none

· Constraints: none.

· Cardinality:

There is zero or more “MaxStrength” object in the system. Each time a new exercise is created, a “MaxStrength” object is created. The cardinality of this module is n (any non negative integer number).

5. Object Class: Athlete

· Purpose:

The “Athlete” class is used to hold all the information about an athlete: his/her name and student ID so that he/she can log in to the system and view his workout program for a certain day. This object serves as a athlete’s profile or record in which his current student status(freshman, sophomore,…), his position in a team…will be stored.

· Narrative:

This class has methods which are used by other classes to create its new instance object with a certain “athleteName”,“athleteID”, his “yearInSchool”, “teamName”… Whenever a coach selects an adding new athlete functionality, this object is created with an appropriate field, and those information will be set in the object through the setting methods. Moreover, other modules or functions can get these information via the getting methods in this module.

· Interfaces:

class Athlete

{

private:

boolean activeStatus = true;

File * inputFile;

string name;

int ID;

string teamName;

string position;

vector <MaxStrength> listMaxStrength;

public:

Athlete();

Athlete(boolean status, string

name, int newID, string newTeamName, string pos, vector <MaxStrength> newMS);

void setActiveStatus(boolean status);

void setName (string name);

void setID (int newID);

void setTeamName (string newTeamName);

void setPosition (string pos);

void setMaxStrength (MaxStrength newMS);

boolean getActiveStatus ();

string getName ();

int getID();

string getTeamName();

string getPosition ();

MaxStrength getMaxStrength();

void displayAthleteInfo();

~Athlete();

}

· Data/ Attribute:

· athleteName is used to hold the name of an athlete. Its maximum size is of 25 characters. It will be input in the format first name and last name.

· athleteID is used to verify the right to access to the system.
· activeStatus is used to keep track of if an athlete is active member in the team or not.
· yearInSchool is used to specify the student’s current status: freshman, sophomore, junior, senior…
· teamName: specifies the team name in which an athlete belongs to.
· teamPosition: holds the position that an athlete plays as.
· listOfRM : holds the list of the maximum strength for an athlete.
· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create new coach to control the system or when a coach logs in to the system.

· “Planner”, “TeamSport”, “I/O” and “Database” modules will have accesses to this module.

· Inheritance/with/use hierarchy: none

· Constraints: none

· Cardinality:

There is zero or more “Athlete” object in the system. Each time an athlete logs in to this system, a new “Athlete” object is created. The cardinality of this module is n (any non negative integer number).

6. Object Class: TeamSport

· Purpose:

The “TeamSport” class is used to hold the name of a team added into the system.

· Narrative:

This class has methods which are used by other classes to create a new team sport Whenever a coach selects an adding new team functionality, this object is created to gather information for a certain team. Those information will be set in the object through the setting methods. Moreover, other modules or functions can get these information via the getting methods in this module.

· Interfaces:

class TeamSport

{

private:

string teamName;

public:

TeamSport();

TeamSport (string name);

void setTeamName (string name);

string getTeamName ();

void displayTeamInfo();

~TeamSport();

}

· Data/ Attribute:

· teamName is used to hold the name of team existing in the system. Its maximum size is of 50 characters.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to create/add new team into the system.

· “Planner”, “Coach”, “Database”, and “I/O” modules will have accesses to this module.

· Inheritance/with/use hierarchy: none

· Constraints: none

· Cardinality:

There is zero or more “TeamSport” object in the system. Whenever the coach wants to create/add the new team into the system, a “TeamSport” object is created. The cardinality of this module is n (any non-negative integer number).

7. Object Class: DataBase

· Purpose:

The “DataBase” class is used to store all the data for the whole system: list of all the team sports, list of all the daily programs that a coach creates and list of all athletes within a team. Through this class, any data will be retrieved for use at any time: when a coach create or edit the existing programs, when a coach adds an athlete into a team, or when he wants to make an analysis based on each athlete’s performance over a certain period of time..

· Narrative:

This class has methods which are used by other classes to access and manipulate the stored data. Whenever a coach selects an adding new team functionality, this object is created to store the gathered information for a certain team. On the other hand, if a coach wants to create a new workout program, a new daily program will be added into the listOfDailyProgram. In addition, an new athlete can also be added into the listOfAthletes to the system. Those information will be set in the object through the setting methods. Moreover, other modules or functions can get these information via the getting methods in this module.

· Interfaces:

class DataBase

{

private:

vector <string> listOfTeamSports;

vector <DailyProgram> listOfDailyProgram;

vector <Athlete> listOfAthletes;

public:

DataBase();

DataBase (vector <string>

listT, vector <DailyProgram> newDP, vector <Athlete> listA);

void storeAthlete (Athlete ath);

void storeDailyProgram (DailyProgram DP);

void storeTeamSport (string name);

~DataBase();

}

· Data/ Attribute:

· listOfTeamSports: holds list of teams there are in the system.

· listOfDailyProgram: holds list of all the programs that created.

· listOfAthletes :holds list of all athlete’s records.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to retrieve or store data from/into the system.

· “Planner”, “DailyProgram”, “Athlete”, “Teamsport”, and “I/O” modules will have accesses to this module.

· Inheritance/with/use hierarchy: none

· Constraints:

· valid data type storage.

· certain objects/modules can invoke this class for retrieving/storing data.

· Cardinality:

There is only one object in the system. Whenever the coach wants to create/add the new team into the system, a “TeamSport” object is created which will be added to the “listOfTeamSports” to store as database. The cardinality of this module is 1.

8. Object Class: Date

· Purpose:

The “Date” class is used to represent a certain date: day, month, year. It will specify the date in which a program is created or used.

· Narrative:

This class is invoked when a certain daily program is created, or when a maximum strength of an athlete is recorded, or when a coach wants to specify a certain period of time to view and analyze an athlete’s performance.

· Interfaces:

class Date

{

private:

string day;

int month;

int year;

public:

Date();

Date (string day, int month, int year);

void setDay (string newDay);

void setMonth (int mon);

void setYear (int newYear);

string getDay ();

int getMonth ();

int getYear ();

~Date();

}

· Data/ Attribute:

· day: holds the day in which the data is entered or stored. Its value is in the range 01- 31.
· month: holds the month in which the data is entered or stored. Its value is in the range 01- 12.
· year: holds the years in which the data is entered or stored. It is a valid four-digit number.
· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to retrieve or store data from/into the system.

· “Analysis” , “DailyProgram” and “MaxStrength” modules have accesses to this module.

· Inheritance/with/use hierarchy: none

· Constraints: none.

· Cardinality: There is one or more object in the system. The cardinality of this module is 1 to n (non-negative number)

9. Object Class: Analysis

· Purpose:

The “Analysis” class is used by a coach to view and make a comparison between an athlete’s actual performance and the setting up program by the coach for this athlete/team. It will generate the charts based on the total work load of an athlete over a certain period of time. From these charts, the coach can view and analyze his athlete’s performance to see if they show any improvement or need some more training and practices. He can also have his comments/analysis save into the database and those will be retrieved easily for use later.

· Narrative:

This class has methods which are used by other classes or other methods to display an athlete’s performance over a certain period of time. Whenever a coach selects an analysis for an athlete’s performance functionality, the program will ask the name of an athlete that he wants to look at and a certain range of time. This object is created to generate the charts based on each athlete actual workout and his daily program prescribed by his coach by calling to the “GenerateCharts.” In addition, the coach can view the charts generated and do the analysis. He can enter his comments/analysis for each athlete’s performance over a period of time by calling the “analyzePerformance” method.

· Interfaces:

class Analysis

{

private:

Graphics chart;

int athleteID;

Date fromDate;

Date toDate;

public:

Analysis();

Analysis (Graphics c, int ID, Date from, Date to);

void setAthleteID (int id);

void setFromDate (Date from);

void setToDate (Date to);

void generateCharts ();

void analyzePerformance();

~Analysis();

}

· Data/ Attribute:

· chart: displays the charts for athlete’s performance graphically.

· athleteID holds an athlete’s student ID.

· fromDate, toDate :holds the date to specify a certain period in which a coach wants to view the charts or does his analysis.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to display a chart or do the analysis.

· The “Coach” and “I/O” modules have accesses to this module.

· Inheritance/with/use hierarchy: none

· Constraints: valid data for generating charts.

· Cardinality:

There is zero or more objects in the system. Whenever the coach wants to view a chart or does his analysis for athletes’ performance, a “Analysis” object is created. The cardinality of this module is 1 to n (any non-negative number).

10. Object Class: ErrorHandler

· Purpose:

The “ErrorHandler ” class is used to hold the list of error messages which are invoked when an user enters wrong or invalid data/request.

· Narrative:
When an user inputs invalid data into the system, an appropriate error message will be prompted to inform the user. For instance, if an user types in the wrong password when he logs in, it will display a message “Invalid user/password. Please try again.” When

· Interfaces:

class ErrorHandler

{

private:

Vector <string> errorList;

public:

ErrorHandler();

void insertErrorMessage(string msg);

void deleteErrorMessage(string msg);

void displayErrorMessage();

~ErrorHandler();

}

· Data/ Attribute:

- errorList: contains the list of all the error messages.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to retrieve or store data from/into the system.

· “I/O” module will have access to this module.

· Inheritance/with/use hierarchy: none

· Constraints: none.

· Cardinality: There is zero or more instance of this object in the system. The cardinality of this module is 0 to n (non-negative number)

11. Object Class: ErrorMessage

· Purpose:

The “ErrorMessage ” class is used to hold the type of error messages and the content of each one. It will be invoked by the “ErrorHandler” when an user enters wrong or invalid data/request.

· Narrative:
When an user inputs invalid data into the system, an appropriate error message will be prompted to inform the user. For each type of error, the according content of that error will be displayed.

· Interfaces:

class ErrorMessage

{

private:

string errorName;

string errorMsgContent;

public:

ErrorMessage();

void setErrorName(string msg);

void displayErrorMessage (string errName);

void setMsgContent();

~ErrorMessage();

}

· Data/ Attribute:

· errorName: contains the name of the error messages.

· errorMsgContent: holds the content of the message.

· Access:

· only functions/methods in the class can access to its private data member.

· since its methods are declared as “public”, they can be accessed by any other classes or methods.

· These methods can be accessed when there is a need to retrieve or store data from/into the system.

· “ErrorHandler” module will have access to this module.

· Inheritance/with/use hierarchy: none

· Constraints: none.

· Cardinality: There is zero or more instance of this object in the system. The cardinality of this module is 0 to n (non-negative number)

5. Integration Test Plan

For this phase, we will test each module independently. After this, we will integrate modules into sub-systems and test each of these sub-systems, how they interact with each other. The following are listing of S&C modules and their minimum criteria.

Modules
Criteria

· Coach
· get name, password

· set name, password

· check login status

DailyProgram
· set name, date, Exercise, Program, date

· add Exercise

· find exercise

· delete exercise

· modify program

Exercise
· get warm-up status, name, repetition number, set number, repetition max, weight, Percent Weight,

· set warm-up status, name, repetition number, number of sets, repetition maximum, weight, percent weight

MaxStrength
· set name, repetition maximum, date, weight

· get name, repetition maximum, weight

Athlete
· set active status, name, id, team name, position in a team, maximum strength

· get status, name, id, team name, position, maximum strength

TeamSport
· set name

· get name

DataBase
· store athlete, dailyProgram, team sport

· display list of athletes, team sport

The following test cases will be used to test the functionality of each module.

Test Case Identification
Set Coach name and password

Purpose
To make sure that name and password of coach object is saved correctly

Items tested
Variables: Name, password

Functions: SetName(), setPassword()

Input
String character for name, string character for password

Expected output
Input is saved to Name and password variables

Environment needs / special test procedures
Test driver to display content of variable name and variable password to system console. Using Window-based environment.

Test Case Identification
Get coach name and password

Purpose
Allow other module read access to name and password

Items tested
Functions: getName(), getPassword()

Input
None

Expected output
Name and password values stored from Name and Password variables

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Set Name and Date

Purpose
Assign data input to variables name and date

Items tested
Functions setName(), setDate()

Input
Name and date input

Expected output
Variables name and date will contain the input data

Environment needs / special test procedures
Test driver to display values from these variables to system console. Using Window-based environment.

Test Case Identification
Store exercise to daily program module

Purpose
Add exercise into daily program

Items tested
SetExercise()

Input
Exercise data

Expected output
Data input is stored in the list of exercises

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Find Exercise

Purpose
To find a specified contained in the exercise list

Items tested
Function find()

Input
An exercise name

Expected output
The whole exercise data is returned

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Remove exercise from a daily program

Purpose
To remove an exercise from the exercise list

Items tested
Function deleteExercise()

Input
The name of the exercise

Expected output
An updated list of exercises with the specified exercise removed

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Display daily program

Purpose
To view the content of the daily program

Items tested
Function displayDailyProgram()

Input
None

Expected output
All data member of DailyProgram module are showed

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Add an exercise to a daily program

Purpose
To add another exercise into a specified daily program

Items tested
Function addExercise()

Input
An exercise input

Expected output
The list of exercises are updated with the new exercise added to it

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Get input to exercise module

Purpose
To get all data saved from data members inside Exercise module

Items tested
Functions: getExName(), getRepNum(), getSetNum(), getRepMax(), getWeight(), getPercentWt()

Input
User data input as string of character and integer values as appropriately specified

Expected output
All stored values stored inside data members of Exercise module

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Convert PercentWeight to Kilogram

Purpose
To convert percent weight (specified by the coach when adding an exercise to a daily work out program) into the appropriate weight based on the repetition strength maximum of each athlete

Items tested
Function convertPercentWtToKg()

Input
None

Expected output
The correct value after being converted

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Set data to Exercise module

Purpose
To get all data input from user and store them into appropriate variables

Items tested
Functions setWarmUpStatus(), setExName(), setRepNum(), setNumSet(), setRepMax(), setWeight(), setPercentWt()

Input
Character string and integer values are used

Expected output
All data members will store new values as taken by the functions

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Get data for MaxStrength module

Purpose
Get all values and data input and store them to appropriate data member inside MaxStrength module

Items tested
Functions SetExName(), setRepMax(), setDate(), setWeight()

Input
String, integer, and date data input

Expected output
Data member will store the appropriated value that was get through these functions

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Get data from MaxStrength

Purpose
Retrieve all data stored inside data members of MaxStrength module

Items tested
Functions GetExName(), getRepMax(), getDate(), getWeight()

Input
None

Expected output
All data stored inside MaxStrength module

Environment needs / special test procedures

Test Case Identification
Disable Active status of an athlete

Purpose
This is a way to remove an athlete from the current team and still preserve his entire information or to add him back into the current team after being away from the team for a given period

Items tested
Function setActiveStatus()

Input
A boolean value

Expected output
The status of the athlete is set or disable (depending on the coach’s specification)

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Create a name for a team

Purpose
To create a name for a given team

Items tested
Function setTeamName()

Input
String character

Expected output
Variable teamName contains the string character input

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Get team name from TeamSport module

Purpose
To get the name of the team

Items tested
Function getTeamname()

Input
None

Expected output
The team name stored inside variable teamName

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Display team information

Purpose
To display a list of all athletes belonging to a team

Items tested
Function displayTeamInfo()

Input
None

Expected output
A list of athlete names belonging to that team

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Appropriately storing athlete’s data from DataBase module

Purpose
To check if the athlete’s data /information is stored appropriately.

Items tested
Function storeAthlete(), storeDailyProgram(), storeTeamSport()

Input
· Athlete’s data in the Athlete data type when testing function storeAthlete()

· Daily program’s data in the DailyProgram data type when testing storeDailyProgram() function

· A name of a team sport in the string data type when testing storeTeamSport() function.

Expected output
All data input must be stored in the right place with the correct data type format.

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Generating correct performance chart with the set of input data.

Purpose
Test if the chart displaying the athlete’s performance is properly generated from the Analysis module.

Items tested
Function generateCharts() from the Analysis module

Input
Enter a set of performance data within a period of time

Expected output
Displaying a good bar chart for the athlete’s performance corresponding to the data input set.

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Setting athlete’s Id from Analysis module

Purpose
To set the athlete’s id to generate analysis

Items tested
Function setAthleteID()

Input
Enter an athlete’s id in a four-digit format

Expected output
Variable AthleteID contains the four-digit integer input

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Set the start date for performance analysis chart

Purpose
To set the start date of the athlete’s performance chart

Items tested
Function setFromDate() in the Analysis module

Input
A date in the format mm/dd/yyyy

Expected output
Variable FromDate contains the begin date with the Date date type.

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Set the end date for performance analysis chart

Purpose
To set the end date of the athlete’s performance chart

Items tested
Function setToDate() in the Analysis module

Input
A date in the format mm/dd/yyyy

Expected output
Variable ToDate contains the end date of the athlete performance analysis in the correct data type – Date.

Environment needs / special test procedures
Using Window-based environment.

Test Case Identification
Displaying error messages from the ErrorHandler module

Purpose
Check for enable displaying the error message if the ErrorHanler object is triggered.

Items tested
Function displayErrorMessage() in the ErrorHandler class

Input
Invalid login information

Expected output
The invalid login error message is displayed.

Environment needs / special test procedures
Using Window-based environment.

6. Demonstration Plan

The complete system is expected to be delivered by June 10 and the demonstration will be given. The demo will require two NT machines connected via an Ethernet. One machine will play the role of the machine in the coach’s office, and the other will play the role of the one in the weight room for athlete to enter workout information. The S&C software will run on both machines.

Execute the SC.exe file

The following scenarios will be demonstrated:

· SC.exe file is executed on the coach’s machine. The system is initialized and prompt for login:

· The coach logs in. Intend to have two cases

· Incorrect login: coach enters incorrect username and/or password and presses OK button. The message appears saying that login is not correct. Login dialog returns to prompt coach to login again.

· Correct login: coach enters correct username and password and presses OK button. Then, all menus and menu items are active and available for coach to choose.

· Coach wants to create a new team: coach selects File|New|Team

· A Create Team dialog box appears for coach to enter team name
· Coach enters team name and clicks OK button
· There will be two situations: team name already existed in the system, and new team name has been entered. In the first case, the system will give an error message saying that the team name existed – the operation fails – coach presses Enter key to return to the main window. In the second case, a message saying the successfulness of the operation, coach hits Enter key to return to the main window.
· Coach wants to add new athletes: coach selects File|New|Athlete

· An Add Athlete dialog appears for coach to enter new athlete information.

· Coach enters new athlete’s information, e.g., name, ID, team name, weight, year in school. Then, the coach hit OK button.

· Again, two situations will be simulated: athlete existed in the system and new athlete added. In the first case, an error message appears saying that the athlete already existed in the system – an operation fails – and coach click Return key to return to the main window. In the second case, a confirmation dialog box appears say in that the new athlete has been successfully added.

· Coach wants to create new daily program for a team: coach selects File|New|Daily Program

· A New Daily Program dialog box appears for coach to enter program information.

· Coach enters daily program information: team name, date, and a list of exercises.
· Coach selects OK button
· A message appears saying that the new daily program has been successfully
· Coach hits Enter key to go back to the main windows
· On the Athlete’s side, an athlete logs in. Pretend to have two situations: Incorrect login and correct login.

In the first case, an athlete enters an incorrect login. A message appears telling the user that the login is incorrect and prompt the user to re-try.

In the second case, an athlete has entered a correct login. An appropriate window is expected to appear with the following information:

· Athlete’s name

· Athlete’s ID

· Current-day daily program of that particular athlete

Athlete then enters workout information: warm Up, repetitions, weight, set.

Athlete then clicks Close. The workout program is stored in the database.

· Back to the coach sides, the coach may want to view statistical data: the coach selects View|Analysis
A dialog box is expected to appear for coach to select which athlete’ data he wants to analyze. The dialog box would contain the following information:

The coach then enters analysis information to the dialog box (above), then he clicks OK button. The bar charts will display on the main window showing the trends of that particular athlete – successful or unsuccessful. The charts contain all necessary information of that athlete, e.g., Athlete Name, Team Name, Start Date, End Date. There are two charts on the same Cartesian coordinates. One chart describes the prescription plan and the other describes the actual performance of an athlete.

The coach clicks File|Close to go back to the main window

The coach then click File|Exit to terminate the system. (Done demonstration!!!)

7. Tracking and Control Mechanisms

There are four groups of files:

· Source files

· Make files, and workspace files

· Object files and executable files

· Data files (text file, typically)

The common directory, which can be seen by all team members, is used to keep all files:

~teame/project/

 Each group of files is stored in a sub-directory, which may be further divided into sub-directories.

All modules that are in progress and have not yet been fully tested are put in the sub-directory called inProgress:

~teame/project/modules/inProgress/*.*

All modules that have been fully tested are put in a sub-directory called complete

~teame/project/moudles/complete/*.*

All make files and workspace files are stored in a directory called workspace, which is created by Visual Studio (will discuss more about this later)

~teame/project/workspace/*.*

All object files and executable files are stored in a sub-directory called Debug, which is also created by Visual Studio:

~teame/project/workspace/Debug/*.*

All data files are kept in a sub-directory called Data:

~teame/project/Data/*.*

The difficulty of keeping track of module dependency has been identified early on, and the MONkEY team has decided to use Visual Studio to simplify the problem. In particular, the MONkEY team will use VC++ version 5.0 Professional to develop S&C Software. Visual Studio automatically creates make files and Debug sub-directory (where executable file and object files reside). When changes are made to one module, Visual Studio will recognize all dependencies recompile other dependent modules.

Each module will contain the following information:

· Author name. The person who build the module
· Version. The newly created module will have version 1.0; any changes made to the module for the first time result in a version 1.1; and so on.
· Date. The last time the module has been edited.
Management rules:
Build. is an action that makes executable file out of separate modules. A build is run every other day by the manager of the phase only.

Check out / Check in. A MONkEY member can check out a module from common directory and copy it to his/her private directory for change/update. Only one person can check out a module at a time. A log file is kept in Data directory to list all checked-out/checked-in modules.

Delete. Obsolete modules sometimes need to be deleted. This operation can only be done by the manager.

· Requirements Cross Reference

Requirements
Object Mappings

One type of users of the S&C system is Weight Training Coach. A coach has name and password to identify him in the system.
Coach

The S&C software provides the ability to prescribe exercise accurately and efficiently. This object (refer to the object on the right, same meaning for this whole table) takes care of prescribed schedule information.
Planner

The S&C Software allows Strength and Conditioning Coach to make daily workout program for his/her athletes. This object provides information of one-day workout for a particular athlete.
DailyProgram

The S&C software helps Coaches and Athletes at the Weight Training room to schedule and keep exercise information efficiently. This object encapsulates all information for a particular exercise and facilitates record’s operation (which will be discussed soon in this table)
Exercise

The S&C software allows coach to prescribe schedule for Team Sports as well as for Individuals. There is more than one team sport, each team sport is identified among others by its unique name. Every athlete must belong to a team sport. This object encapsulates team information so that it can be used as a single data type, which in turn will simplify the solution to the above requirements
TeamSport

The S&C Software has the ability to keep records for latter evaluation. This object provides a variety of operations to enforce the ability of storing and retrieving athletes’ information.
DataBase

One group of the users of the S&C Software is athlete. An athlete has name, id, password, team name, year in school, and position in the team.
Athlete

Each athlete has different strength, based on which the coach could assign an appropriate workout schedule. This strength even differs among exercises, and dates. This object will provide all information about a particular athlete’s strength in a particular exercise in a particular date.
MaxStrength

The S&C software allows coach to view/compare the results of his athletes over period of time to see what the trends would be. Based on this historical data, the coach could prescribe future exercise more accurately. This object takes care of analyzing data and producing Charts for a particular athlete.
Analysis

The S&C software provides its users an easy-to-use user interface. This module incorporates all interface components so that the input output of the system can be easily done.
I/O

The S&C software should be reliable enough so that the chances of loosing data could be minimized. This object is responsible for error handling.
ErrorHandler

The system should report problem to its users appropriately. This object is responsible for generating appropriate error messages.
ErrorMessage

8. Documentation

All important aspects of the project have been documented.

The MONkEY team has used a variety of resources to develop the Architecture Design for S&C Software, they include:

· Classical and Object-Oriented Software Engineering, Stephen R. Schach.

· Object-Oriented Programming in C++, Ira Pohl

· Fundamentals of Software Engineering, Carlo Ghezzi – Mehdi Jazayeri – Dino Mandrioli.

· The Mythical Man-Month, Frederick P. Brooks, JR.

· ICS121 – Software Methods and Tools, Lecture Notes – Debra Richardson.

9. Glossary

· Notations used in the Object Modeling Diagrams

· 1-to-1

· 1-to-many (0 or more)

· 1-to-(zero-or-one, optional)

· 1-to-(one-or-more, required)

· 1-to-n

· S&C – Strength and Conditioning Software, the software system being developed.

· GUI – Graphical User Interface

n

1+

Cancel

OK

99

Year

07

Date

06

Month

To Date:

99

Year

01

Date

Month

01

From Date:

9780

AthleteID

Data Analysis

Cancel

OK

Password

User Name

Coach

Welcome to S&C

PAGE
69

